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In viscous—inviscid coupling analysis, the direct coupling tech-
nique and the inverse coupling technigue are commonly adopted.
However, stability and convergence of the algorithms derived are
usually very unsatisfactory. Here, by using the transpiration tech-
nique to simulate the effect of the displacement thickness, a new
simultaneous coupling method is derived. The integral boundary
layer equations and the full potential equation are chosen to be the
viscous—~inviscid coupled system. After discretization, the Newton—
Raphson technigue is proposed to solve the coupled nonlinear sys-
tem. Several numerical results are used to demonstrate the accuracy
and efficiency of the proposed method. © 1995 Academic Press, Inc.

1. INTRODUCTION

In viscous flow calculations, viscosity usually plays a sig-
nificant role in a small region consisting of the boundary layer
and the wake, whereas the rest of the flow ficld is mainly
inviscid. This approximation is applicable for many practical
cases. One way to explore this characteristic of the flow field
is to use the so-called parabolic or thin-layer Navier—Stokes
equations, which is intermediate between the full Navier—
Stokes equations and the parabolic boundary layer equations.
Reduced forms of the Navier—-Stokes equations are usually
more economical to solve. This technique is most useful when
there is a dominant flow direction and the elliptic nature of
the flow is not strong. However, when the flow field contains
separated regions, it may offer little advantages over the full
Navier—Stokes equations. Moreover, at least for the present
time, methods using any form of the Navier—Stokes equations
have fairly poor transition models and cannot handle transitional
separation bubbles.

Another way is to use separate equations for the viscous
dominant region and the inviscid region. The governing equa-
tion therefore consists of two coupled equations: a viscous
equation governs the boundary layer and the wake and an
inviscid equation governs the rest of the flow field. In solving
the two coupled equations, the traditional ways are the direct
coupling approach and the inverse coupling approach, which
involve iterating on both equations alternatively until conver-
gence. However, both coupling approaches can be unstable and
convergence rates are usually extremely slow [13]. A refine-

ment to the above two approaches is the semi-inverse approach,
which improves on the stability of the iterative process. How-
ever, when the boundary layer grows thicker or if the flow is
separated, severe under-relaxation is required in updating the
variables and the resulting convergence rate is inevitably very
slow [7). This clearly indicates the limitation of using the semi-
inverse approach.

Various authors have explored the possibility of solving the
coupled equations simultaneously. Methods derived includes
the quasi-simultaneous coupling approach {12] and the fully
simultaneous approach in [10]. In solving the two coupled
equations, the location of the boundary between the viscous
flow and the inviscid flow must be easy to handle in order to
impose the coupling condition and to know where to start
inviscid calculations. In [10], the location of this boundary is
traced in the physical computational domain; very complicated
interpolation formulas and discretization formulas are inevita-
bly involved which is very difficult to implement, especially
when the computational domain becomes more irregular and
complicated. Therefore, special methods are required which
can handle the arbitrariness of the boundary layer thick-
ness.

One method is to use the streamline coordinates system to
discretize the inviscid equation [3, 4], which turns out to be
very successful. Here, another method, namely the transpiration
technique is used. Transpiration is a technique in which extra
nonphysical normal flows are created on the blade surface and
along a wake line in order to form a new streamline pattern’
such that the surface streamlines no longer follow the blade
surface under inviscid flow. This technique can be used to
simulate the boundary layer thickness very efficiently and has
been used in [11, 7, 9] in a semi-inverse coupling context. In
this paper, the transpiration technique is used to provide a new
simultaneous coupling technique, The full potential equation
is used to govern the inviscid fiow field while the integral
boundary layer equations are used to calculate the viscous
effect. After discretization, the Newton—Raphson method is
used to solve the coupled systems simultancously. Various test
cases are used to illustrate the accuracy of the transpiration
technique and the efficiency of using the Newton—-Raphscn
method.
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FIG. 1.

2. FORMULATION

In the following, the problem will be formulated for internal
flow calculations. Assuming the flow is isentropic and irrota-
tional, then the velocity potential exists and the continuity equa-
tion becomes

V- (pVep)=0 (2.1
which is known as the full potential equation. In order to calcu-
late the density, the energy equation is used, which can be
integrated to give

2 2
SN
y—1

(2.2)

where ¢ is the speed of sound and ¥ is the ratio of specific
heats. For internal flow, the constant is usually more convenient
to be evaluated at the stagnation point and (2.2) becomes
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, (2.3)

where the subscript 0 denotes evaluation at the stagnation point.
By using the isentropic relations'

p : 2.4)
(2.5)
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=13
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where & is a constant, the density is finally given by

o, azilaty

2.6

A sample computational domain is depicted in Fig, 1. A cut

I See, for example, [1, p. 3217.
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The computational domain for cascades.

¥,. 1s introduced which joins the trailing edge of the blade with
the outer boundary. By the definition of the circulation,

B=jgcu-ds=¢+-—qb" on Y., 2N
where C is any curve in the flow field enclosing the blade. As
the circulation 8 is introduced in order to allow lift 1o the
airfoil, one extra equation is required and is provided by the
Kutta condition, which forces the equality of the velocity leav-
ing the trailing edge on the upper and the lower surface. On
v, and vy, the periodic condition is imposed as

(by‘, - qbyb = SV)'! s (28)
where 5 is the spacing between consecutive blades and V,; is
the inlet velocity tangential to ;. In internal flow, an exfra
condition is required in order to fix the shock position. A
detailed study of the condition is given by Deconinck and
Hirsch [2] and more details are discussed in [6]. The condition

hpr — by = const (2.9)
is used here, where the subscripts BR and BL are defined in
Fig. 1. Following [14], the physical quantities which are chosen
as the inputs are the inlet tangential velocity V,,, the stagnation
density py and the stagnation speed of sound ¢;. In practice, p
is scaled by p; so that py = 1, while ¢ is scaled by u,,nAs =
¢har — hg s0 that the scaled ¢ has a jump equal to 1 in (2.9).
The velocity and the speed of sound are scaled by the nominal
velocity #yen 80 that u, = . Consequently, two variables left
as input are

(2.10)
(2.11)

Wi = ey
B = Vyxlffﬂ-

For transonic calculations, the artificial compressibility [5,
8] is used. Define dp/ds as upwind streamwise derivative; the
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FIG. 2. The coupling conditions.

density is modified as

dp
p=p—v—+As 2.12
p=p=vo-as (2.12)
in which » is a switching function chosen as [14]
VUM2"1"”09"‘("""”2 ifM<1
v= (2.13)
y+w(l—1/IMY) ifM=1

where ¥, v, A are constants.

In coupling the viscous effect with the inviscid solutions,
there are two coupling conditions (Fig. 2). The first condition
is the presence of the boundary layer thickness. The surface
streamline is moved from the blade surface by the distance
equal to the displacement thickness. The second condition is
the equality of flow quantities at the edge of the boundary layer.
The boundary layer edge velocity used in the boundary layer
equations must be equal to the local inviscid velocity calculated
by the inviscid solver. In order to simulate the streamline move-
ments induced by the displacement thickness, a surface transpi-
ration technique is employed. From Fig. 3, the simplest transpi-
ration modet is used and is given by

=9
pwn = (pwsd%), (2.14)

where w, = dd/ds is the tangential velocity calculated on the
blade surface, w, = d¢/dn is the velocity normal to the blade
surface and &* is the displacement thickness. Using (2.14) to
replace the solid wall boundary condition and the normal flux
cancellation along the wake, the weak formulation of the full
potential equation gives

dN, og
Vb VN, dx = & e + ¥ n
fﬂ pYd - VN, dx Lm pw, &* s ds , L N;ds

(2.15)

+ pa_d)N‘ ds
Yo an

VN, € H'({D),

where H' is a Sobolev space. In order to include the viscous
effects, the integral boundary layer equations are used. The
boundary layer development is governed by two principal equa-
tions, namely the von Karman integral momentum equation
and the integral kinetic energy equation. In practice, the kinetic
energy is not used directly. Instead it is combined with the
momentum equation to give the so-called shape parameter equa-
tion.? In the laminar region, a disturbance amplification equation
is used to determine the transition location. The method is
based on the Omr—Sommerfeld equation and is known as the
&° method. Once transition starts, the flow becomes turbulent
and a dissipation lag equation is used instead to model upstream

2 See [3 or 4].
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history effects. In the transition interval, the momentum equa-
tion and the shape parameter equation are simply taken to be the
weighted averages of their laminar and torbulent counterparts.
More details of the integral boundary equations employed here
and all the closure relations can be found in [3, 4].

The final coupled system can be summarized as

dN;
fan¢-Vde- f ﬂwpwsé”“gds

+j pi?iN,dS
¥ af’l

Yo 611
@=F,(B, &, u,) 2.17)
ds
dH*(8, 5%, u,)
—=F{8, 5, u., () (2.18)
ds
dC, . .
= = F3(0, 6%, u,, C,) inturbulent region
(2.19)
dit . . .
7 = F,(8, &, u,) inlaminar region (2.200
u,—w, =0 (2.21)
|(wodee | = [(w2)ee (2.22)

where (2.17) denotes the integral momentum equation, (2.18)
denotes the shape parameter equation, (2.19) denotes the dissi-
pation lag equation, (2.20) denotes the disturbance amplification
equation, (2.21) is the velocity coupling condition, and (2.22)
is the Kutta condition in which the subscripts re, and te; are
defined in Fig. 5. In the formulation, the equality of the edge
velocity and the inviscid velocity is treated as an equation rather
than using w, directly in the integral boundary layer equations.
This is because if w, is used directly, the formulation resembles
using a direct coupling technique to solve the integral boundary
layer equations which may not converge for separated flows.

3. DISCRETIZATION AND SOLUTION

In discretizing the full potential equation (2.16), the finite
element method is used. Let 7, = {T;} be a family of triangles
parametrized by k, the maximum edge length over all the trian-
gles. Because of the imposed boundary conditions described
in the last section, the potential ¢ is determined uniquely up
to an arbitrary constant. This problem can be solved by simply
fixing the value of ¢ at one point within the computational
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domain and the following is chosen:

$p = 0. (3.1)
Thus, after scaling, (2.9) gives
¢BR =1. (32)

Define the conforming piecewise linear function space as

H ={v,eC'):v,)r € PYTHVTE T}, (3.3)

where PY(T) is the space of polynomials of degree | on 7 and
C%(() is the space of continuous function on . Together with
the jump condition (2.7) for the circulation and (2.8) for the
periodic condition, we introduce the finite dimensional space
Vir={vEH,: vt —v =aoni,v, —v, =7,
=1 B 3, % Yo W (3.4

Up, = 0,05, = 1}

Thus, ¢ is in the space V{7, where B is the amount of
circulation and % = sV,; which is defined in (2.8). The test
space is chosen to be the space

v ={veH,: vt —v =0onX,v, —v, =0,
h h ¥, Yy (3'5)
Up, = 0, Uge = O}

At the inlet and outlet, the average velocities are calculated as

L

— _ ] in

Voo V)1 == 3 (V) (3.6)
—_— —_— 1 "ﬂlll

(Ve V)T == 3 (V! G.7)

'n'Ol.ll E=

where m;, and n,, denote the number of inlet and outlet elements,
respectively; typical inlet and outlet elements applied in the
summations are depicted in Fig. 4. The average velocities calcu-
lated by (3.6) and (3.7) are used to approximate the inlet and
ocutlet boundary conditions as

b =

P = oV, V,) V., ony (3.8)
9 - - =

e (AT AR 9

where the inlet tangential velocity V, imposed in (2.8) is used
in (3.8). Following the discussion above, the full potential equa-
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FIG. 4. The inlet and outlet elements.

tion (2.16) is finally discretized as

dN,
Jnf)V¢-VN,~dx= pw,é‘*——;ds

Y, d

[ PV Nds (3.10)

+JﬁKMm YN € V90,
Yo <

In discretizing (2.22}, a second-order one-sided finite difference
approximation is used. The final discretization of (2.22) can be
denoted by
F(¢) =0. (3.1
In discretizing the integral boundary layer equations, the
same grid points on the blade surface for the finite element
discretization are used. The blade is divided into upper and
lower surfaces by the stagnation point and the trailing edge
(Fig. 5). Starting from the stagnation point, the accumulated
arc length s for each surface is calculated and is continued into
the wake (Fig. 6). The equations are discretized using s along
the flow direction. The momentum equation (2.17) and the
shape parameter equation (2.18) are discretized using the loga-
rithmic central differences. In turbulent region, the shear stress
coefficient lag equation (2.20) is discretized by the backward
Euler method; while in laminar region, the amplification equa-
tion (2.20) is discretized by the forward Euler method, More
details about the discretization can be found in [3]. At the first
grid point after the stagnation point, the boundary layer is

similarity station

AN

K _ stagnation point

similarity station
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assumed to be similar and the derivative terms there are set
to their known values obtained from the similarity boundary
layer theory.

Along the wake, all the boundary layer varibles are defined
as single variables instead of dividing into upper and lower
surface variables (Fig. 5); and the accumulated arc length of
the wake is calculated after the trailing edge of the lower surface
{Fig. 6). Therefore, special joining conditions are required at
the trailing edge to initialize the wake calculations. In particular,
the variables

85 = 8% + 6% (3.12)

b, = 6, + 8, (3.13)
(CT)TEI BTE; + (CT)!E“ Bleu

(Coh, = (3.14)

B, + O,

are chosen to be the initial wake variables in discretizing the
equations in the interval [s,, s., ].

In the discretization, the boundary layer edge velocity u, is
defined at the node while the inviscid velocity w, is defined at
the mid-node (Fig. 6). One simple way to discretize (2.21) is
to use averaging for w, so that

1
—3lw +
He, = 2 W5,

W"r+|fz) =0 (G.15)

However, averagings are prone to the sawtooth spurious mode,
which can easily be triggered off at the separation point or at
the trailing edge region. Therefore, whenever the solutions
appear to have sawtooth spurious modes, the following up-
wind approximation

=0

wo—w, = (3.16)

is used instead. Combining the formulas (3.15) and (3.16),
we have

= G (1+ighw,  +3(1 = ipw,, ) =0, (3.17)

tey

Wy

i wy
te;

FIG. 5. The boundary layer grid stations.
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FIG. 6. The accumulated arc length coordinates.

where

0 if the averaging formula is used,

1 if the upwind formula is used.

In solving the system of discretized nonlinear equations, the
Newton—Raphson technique is used. In the kth iteration, the
Jacobian matrix is assembled and it reduces to solving the
system of linear equations

BY(Sd, N)) — BY, (6, N) = —RY VYN EV] (3.18)
A 87 + APST = —R,  Vs€l[s .5 1U [5.5,]
(3.19)

Sy~ (1 +ip) 8w, +3(1—ip) 8w, N=0

Y12

Vs, € 151, 50, U U5, 50 ) (3.20)

FO(8$) = —F¥(¢) (3.21)
for 8¢ and &7, where B denotes the linearization of the domain
integral and B,,, denotes the linearization of the surface inte-
gral on 7y and v, in (3.10); A € R** denotes the linearization
of the integral boundary layer equations and 77 = (C)?, 6, 6%,
u )" or (B, 6, &%, u,)". In solving the system of linear equations,
(3.20) is not directly used. Instead it is substituted into (3.19)
to eliminate u,. In order to solve the system efficiently, the
band structure of (3.18) should be maintained as far as possible.
Therefore, in assembling the Jacobian matrix, the order of the
equations should be well arranged. Recall that in finite element
discretizations, each node is assigned a node number and each
node number corresponds to one equation and one variable.
Thus, in accommodating the linearized boundary layer equa-
tions (3.19) into the Jacobian matrix, each blade surface node
and each node along the wake is counted four times and the
linearized boundary layer equations are put immediately after
the nodal equation. The banded system is simply solved by LU
decomposition.

The final algorithm can be summarized as:

0

(1) Calculate the stagnation point.

Solve the inviscid problem.

{2) [Initialize the boundary layer variables.
(3) Evaluate the Jacobian matrix.

{(4) Solve the system of linearized equations.
(5) Update the variables.

(6) Recalculate the stagnation point.

(7) Solve the integral boundary equations using a hybrid
coupling marching technique.

(8) Return to step 3 until convergence.

In the initialization stage of the boundary layer variables in
step 2, the integral boundary layer equations are solved station
after station by marching along the flow direction starting from
the stagnation point (Fig. 6). When the kinematic shape parame-

. ter Ay defined by

&§4/0 — 0.290M?
£ 1+0.113M? 3.22)
is not too large, a direct coupling step is executed at that station
by fixing the edge velocity to be the inviscid velocity using
(3.17). When H, is larger than a predefined threshold value, an
inverse coupling step is used instead, where H, is fixed to
be the extrapolated value from the downstream solutions. In
updating the variables in step 5, the relaxation factor is chosen
such that the boundary layer variables are not allowed to change
more than a certain predefined percentage. In step 7, the integral
boundary layer equations are solved by using a special hybrid
coupling marching technique, which is used in the program
MISES [3, 15]. Denote ﬁk and u, as the updated variables using
the Newton—Raphson technique in step 5, The hybrid coupling
marching technique is to solve the integral boundary layer
equations (2.17), (2.18), (2.19), or (2.20), together with the
equation

du, {u,
+Fo—I|——1]=0 3.23
“ dH, (Ee ) | ©.23)
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x=0

FIG. 7. The mesh for test case 1.

where ® is a large constant. Like step 2, the solutions are
calculated station after station by marching from the stagnation
point along the flow direction. The reason for having step 7 in
the algorithm is mainly to accelerate the convergence of the
algorithm, especially when the flow is separated. Although the
simultaneous coupling technique converges rapidly for most
of the cases, its performance is still not very satisfactory in
calculating separated flow. By including the hybrid coupled
marching which fixes the location of separation more accurately
and cfficiently, the overall performance becomes much better,

4. NUMERICAL RESULTS

The main aims of the test cases presented here is to demon-
strate the accuracy and the efficiency of the boundary layer
coupling procedure using the transpiration technique. Three
test cases will be presented. The number of iterations quoted

0.045
5 00
0.035—

- MISES
0.03

= FINSUP
0.025-
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below is the first iteration to drive

max(|8e| .., |67]|) < 0.008, .10

where &7 is defined in (3.19). The program FINSUP, developed
initially in [14] and has been used in Rolls Royce ple, is em-
ployed for solving the full potential equation.

Since the program MISES described in [3-15] has been
verified rigorously with experimental results and is presently
being used in several aerospace companies, the first test problem
is designed to make a comparison of results between present
method and MISES. The flat plate is used with zero stagger.
The mesh is displayed in Fig. 7, where the flat plate is located
in the centre of the mesh together with refinements at the leading
edge. The x coordinate of the leading edge and the trailing edge
is 0 and 1, respectively. The Reynolds number is 0.5 * 1¢/
and the inlet Mach number is 0.11. The averaging formula
(3.15) is used in calculating the edge velocity. The algorithm
converges in two iterations. The resulting displacement and the
momentum thickness is compared in Fig. 8 and the velocity
distribution converges in Fig. 8 and the velocity distribution
is compared in Fig. 9. A good agreement is achieved which
demonstrates that the present transpiration model gives fairly
good results. Note that after the trailing edge, the total displace-
ment thickness and the total momentum thickness are plotted.

The second test case deals with a low speed compressor used
in [15]. The mesh is depicted in Fig. 10. The Reynolds number
is 0.478 x 105, the inlet Mach number is 0.12 and the inlet
and the outlet angle of attack is 37° and 1.2°, respectively. The
upwind formula (3.16) is used on and before the separation
point while the average formula (3.15) is used for the rest of

0.2 0.4 08

FIG. 8.

I ' T ' 1 4 1
1.4 1.6

The displacement and the momentem thickness.
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FIG. 9. The velocity distribution.

the grid points. The inviscid problem takes three iterations
to converge while the overall algorithm converges in eight
iterations. The displacement and the momentum thickness are
shown in Figs. 11 and 12 and the pressure distribution is shown
in Fig. 13. Free transition is used here and laminar separation
bubbles are formed on both the pressure and suction sides at
x = 0.2 and x = (.45, respectively. In hoth sides, the transition
points have been predicted at the end of the separation bubbles,
quickly forcing reattachment, and thus setting the bubble length.
The effect of this can be easily seen from the surface pressure

DN
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AN aY) ) DS :#1'#"‘1‘v‘v‘v#"¢% ", ‘, “,‘ ‘, o
Tavar)l v¢e‘v.v;}g{g;‘vJliliilllifé

distribution; the separation bubbles induce a slow variation in
the pressure which is terminated by a strong adverse pressure
gradient at reattachment. The results reported in [15] is repro-
duced here in Fig. 14 for comparison,

The third test case analyzes transonic flow over a compressor
blade. The mesh is shown in Fig. 15. The Reynolds number is
1.436 x 10° and the transition point is forced at 0.5% of the
total arc length of the blade on both the upper and the lower
surface. The upwind formula (3.16) is used throughout except
along the wake, where the average formula (3.15) is used in-

N AN T

FIG. 10. The mesh for test case 2,
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FIG. 11. The displacement and the momentum thickness on the pressure side.
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FIG. 12. The displacement and the momentum thickness on the suction side.
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FIG. 13. The pressure distribution.

stead. For comparison purpose,
defined by

the pressure coefficient C,

Po, — P
Py~ Pin

G, = (4.2)

(J
is calculated here, where p;, and p; denote the pressure and
the total pressure at the inlet. When the inlet Mach number is
0.83, the inlet and the outlet angle of attack is 59° and 46°,
respectively. The inviscid problem takes seven iterations to
converge while the overall algorithm converges in two more
iterations. The displacement and the momentum thickness are
shown in Figs. 16 and 17 and the pressure distribution is given

-2.0 1 Mises
v1g

0.0

0.5 &

1.0

FIG. 14. The pressure distribution produced in [15].

in Fig. 18, When the inlet Mach number is 1,025, the inlet and
the outlet angle of artack is 58° and 46.6°, respectively. The
inviscid problem takes about 20 iterations to converge while
the overall algorithm converges in 10 more iterations. The
displacement and the momentum thickness are shown in Figs,

FIG. 15.

The mesh for test case 3.
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FIG. 16. The displacement and the momentum thickness on the suction side.

20 and 21 and the pressure distribution is given in Fig. 22. Note
that there is a sudden increase in the displacement thickness at
x = (0.3 on the suction side of the blade in Fig. 20. This is due
to the present of a moderate-strength shock wave as can be
seen in the pressure distribution. The results reported in [15]
is reproduced here in Fig. 19 and Fig. 23 for comparison.

0.035

0.03

0.025—

0.02

0.015-

9* 0.01

0.005—

0.0~

5. CONCLUDING REMARKS

The main aim of the paper has been to describe a new
simultaneous coupling method to solve the viscous—inviscid
coupling analysis problem. The coupling method is based on
the use of the transpiration technique to simulate the effect of

T
c.2

T T T T T
0.4

FIG. 17. The displacement and the momentum thickness on the pressure side.
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FIG. 18, The pressure distribution.

the displacement thickness. The applicability of the Newton—
Raphson technique to solving the entire coupled nonlinear sys-
tem of equations has been demonstrated. The numerical results
have shown that the method can handle fairly thick boundary
layer developments, separation bubbles, and shock-induced
separation; and the convergence rate of the method is very satis-
factory.

In the method, the effect of streamline radius and streamtube

height variations have been ignored. It would be of interest to
include these effects into the method to further improve the
accuracy. Also, since the simple transpiration model (2.14) has
been used, the exact location of the surface streamline along
the wake is not determined. Although it is not a problem with
great practical interest, still it is certainly of interest to know
whether the use of more accurate transpiration models will
enable such a task.

1.5 ises
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C R O R YT PI P DPDPPPDPPR e MISES . AYDRIIGD. L

po m TEST  AVDR *1.00
MISES  AVDR * 1.10
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1.0

0.5

0.0

FIG. 19. The pressure distribution produced in [15].
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FIG. 21, The displacement and the mementum thickness on the pressure side.
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FIG. 23. The pressure distribution produced in [15].
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